

Assessment of Ultrawideband and Global Positioning System Compatibility

Randy Hoffman and Mike Cotton

ISART March, 2002

Contents

- Objectives, Test Setup, and Measurement Methodologies
- Ultrawideband (UWB) Parameters and Characteristics
- Interference Results

Project Objectives

- Primary Objective: assess the interference potential of UWB signals to GPS receivers.
- Secondary Objective: Identify GPS receiver performance metrics and establish repeatable measurement methods.

Test Setup - Conducted

General Conducted Measurement Methodologies

- Metrics
 - Loss of lock
 - Satellite reacquisition time
- Associated performance criteria
 - Maximum UWB signal power below loss-of-lock for which the receiver can regain satellite lock
- Monitor: pseudorange, cycle slip, position, C/N, phase lock, DOP, delta-pseudorange, accumulated Doppler cycles, Doppler

GPS Receivers

Receiver	Code Tracking	Carrier Tracking	Cross Correlator	Narrow- spaced Correlator
1 Agricultural	Yes	Yes	No	No
2 Precision Survey	Yes	Yes	Yes	Yes
3 Precision Approach	Yes	Yes	No	Yes
4 TSO-C129a aviation receiver	Yes	Yes	No	No

UWB Parameters

- Power levels peak vs. average
- Pulse shape/width
- Pulse repetition frequency
- Pulse spacing
- Gating

UWB Pulse Spacing

Gating

UWB Signal Parameters

UWB Signal Parameter	Range
Average Power Density	As needed to induce effect on GPS receiver.
Pulse Width	0.245 and 0.5 nanoseconds
Pulse Repetition Frequency	0.1, 1, 5, 20 MHz
Modulation, Dithering	UPS, OOK, 50%-ARD, 2%-RRD
Gating	100% (no gating) and 20% Duty Cycle

UWB Spectral Characteristics

Amplitude Probability

APD Characteristics

Results

- Characterization of single-source UWB signals
- GPS-performance trends due to singlesource interference

APDs of Single-Source UWB Signals

- 2 Bandwidths 3 MHz and 20 MHz
- Composite plots
 - Across pulse spacing modes for specific PRF values
 - Across PRF ranges for specific pulse spacing mode

APDs of 20-MHz PRF UWB Signals Measured in a 3-MHz Bandwidth

- •Constant-amplitude
- Noise-Like
- Gating
- Peak-to-Average

APDs of 100-kHz PRF UWB Signals Measured in a 3-MHz Bandwidth

- •Low PRF → Impulsive
- •Resolved UWB pulses
- •Gating decreases the percentage of time the signal is on

APDs of Absolute-Reference Dithered UWB Signals Measured in a 3-MHz Bandwidth

•Higher PRF → Gaussian

UWB Categorization

(BW [MHz]	3	3	3	3	20	20	20	20
PRF [MHz]	20	5	1	0.1	20	5	1	0.1
UPS	Amp=k			Impulsive				
OOK								
50%-ARD								
2%-RRD	Gaussian							

Measurement Procedure

Interference Source (dBm)

Trends

- Spectral lines are particularly invasive
- Impulsive signals cause little interference
- Higher PRFs have a greater impact
- Dithering can produce effects that are more Gaussian noise-like
- Gating reduces the impact of interference

Break Lock: Rx 1, Non-Gated

Pseudorange Precision: Rx 1, 50%-ARD

Trends

- Observational results are correlated to BL and RQT.
- RQT has been found to be the most sensitive parameter for identifying interference effects on the receiver.

Rx 1, 5-MHz PRF, 50%-ARD, Non-Gated

SUMMARY

- Measurement Approach
- UWB Characteristics
- Interference Trends Related to UWB Characteristics

Contact Information: Institute for Telecommunication Sciences

•J. Randy Hoffman 303/497-3582 rhoffman@its.bldrdoc.gov

Michael G. Cotton303/497-7346mcotton@its.bldrdoc.gov

•Robert J. Achatz 303/497-3498 rachatz@its.bldrdoc.gov

Mailing address:

U.S. Department of Commerce 325 Broadway NTIA/ITS Boulder, CO 80305

Web address for online report:

http://www.its.bldrdoc.gov/ click on <Online Publications> Scroll down to NTIA Report 01-384

Broadband Noise Power

- Broadband noise accounts for:
 - Sky noise
 - Cross-correlation noise
 - Other satellite signals
- Setting of broadband noise level based on ITU recommendation for minimum C/N_o required for GPS satellite acquisition. (set at –93 dBm/20 MHz)
- Supported by ITU simulations for worst-case GPS cross-correlation noise.

Doppler Frequency of SV25

Spectral Line Alignment

Aggregate Scenarios

Aggregate	UWB Signal Parameters
1	6 × 10-MHz PRF, 2%-RRD, Non-Gated
2	6 × 10-MHz PRF, 2%-RRD, Gated (20% Duty Cycle)
3	2 × 10-MHz PRF, UPS, Non-Gated 1 × 3-MHz PRF, UPS, Non-Gated 3 × 3-MHz PRF, 2%-RRD, Gated (20% Duty Cycle)
4	3 × 3-MHz PRF, UPS, Gated (20% Duty Cycle) 3 × 3-MHz PRF, 2%-RRD, Gated (20% Duty Cycle)
5	(a) 1 × 1-MHz PRF, 2%-RRD, Non-Gated (b) 2 × 1-MHz PRF, 2%-RRD, Non-Gated (c) 3 × 1-MHz PRF, 2%-RRD, Non-Gated (d) 4 × 1-MHz PRF, 2%-RRD, Non-Gated (e) 5 × 1-MHz PRF, 2%-RRD, Non-Gated (f) 6 × 1-MHz PRF, 2%-RRD, Non-Gated

Spectral Effects of Gating

Frequency

Break Lock: Rx 1, Gated

